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1. Index versus Vector Notation

Index notation (a.k.a. Cartesian notation) is a powerful tool for manip-
ulating multidimensional equations. However, there are times when the
more conventional vector notation is more useful. It is therefore impor-
tant to be able to easily convert back and forth between the two. This
primer will use both index and vector formulations, and will adhere to the
notation conventions summarized below:

Vector Index
Notation Notation
scalar a a
vector a a;
tensor A Ayj

In either notation, we tend to group quantities into one of three categories:

scalar A magnitude that does not change with a rotation of axes.
vector Associates a scalar with a direction.

tensor Associates a vector (or tensor) with a direction.
2. Free Indices

(a) A free index appears once and only once within each additive term
in an expression. In the equation below, i is a free index:

a; = eijkbjck + Dijej

(b) A free index implies three distinct equations. That is, the free index
sequentially assumes the values 1, 2, and 3. Thus,

a1 =b1+ ¢
a; =bj +c; implies ag = by + ¢
az = bz + c3



(¢) The same letter must be used for the free index in every additive
term. The free index may be renamed if and only if it is renamed in
every term.

(d) Terms in an expression may have more than one free index so long
as the indices are distinct. For example the vector-notation expres-

sion A = BT is written Ai; = (Bij)T = Bj; in index notation. This
expression implies nine distinct equations, since ¢ and j are both free
indices.

(e) The number of free indices in a term equals the rank of the term:

Notation Rank

scalar a 0
vector a; 1
tensor Aij 2
tensor Aijk 3

Technically, a scalar is a tensor with rank 0, and a vector is a tensor
of rank 1. Tensors may assume a rank of any integer greater than or
equal to zero. You may only sum together terms with equal rank.

(f) The first free index in a term corresponds to the row, and the second
corresponds to the column. Thus, a vector (which has only one free
index) is written as a column of three rows,

a1
a=a;= | as
as
and a rank-2 tensor is written as
A A Asgs
é =A;;=| A Ay Ay
Asgp Aszy Asz

3. Dummy Indices

(a) A dummy index appears twice within an additive term of an expres-
sion. In the equation below, 7 and k are both dummy indices:

a; = CijkbjCk + Dz-jej

(b) A dummy index implies a summation over the range of the index:

Qi = a11 + a22 + as3



(¢) A dummy index may be renamed to any letter not currently being
used as a free index (or already in use as another dummy index pair
in that term). The dummy index is “local” to an individual additive
term. It may be renamed in one term (so long as the renaming doesn’t
conflict with other indices), and it does not need to be renamed in
other terms (and, in fact, may not necessarily even be present in
other terms).

4. The Kronecker Delta

The Kronecker delta is a rank-2 symmetric tensor defined as follows:
Sii — 1 ifi=j
TV 0 ifi#j

or,

100
s;=10 10
00 1

5. The Alternating Unit Tensor

(a) The alternating unit tensor is a rank-3 antisymmetric tensor defined
as

follows:

1 ifijk = 123, 231, or 312
€ijk = 0 if any two indices are the same
—1 if ijk = 132, 213, or 321

The alternating unit tensor is positive when the indices assume any
clockwise cyclical progression, as shown in the figure:
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(b) The following identity is extremely useful:

€ijk€ilm = 0j10km — Ojm Okl



6. Commutation and Association in Vector and Index Notation

(a) In general, operations in vector notation do not have commutative
or associative properties. For example,

Gxb#bxa
(b) All of the terms in index notation are scalars (although the term
may represent multiple scalars in multiple equations), and only mul-
tiplication/division and addition/subtraction operations are defined.
Therefore, commutative and associative properties hold. Thus,
aibj = bjaz-

and,

(aibj)ck = ai(bjck)

A caveat to the commutative property is that calculus operators (discussed
later) are not, in general, commutative.

7. Vector Operations using Index Notation

(a) Multiplication of a vector by a scalar:

Vector Notation Index Notation
ab=7¢ ab; = ¢;

The index 7 is a free index in this case.

(b) Scalar product of two vectors (a.k.a. dot or inner product):

Vector Notation Index Notation
d’ . b =C aibi =C

The index ¢ is a dummy index in this case. The term “scalar prod-
uct” refers to the fact that the result is a scalar.

(¢) Scalar product of two tensors (a.k.a. inner or dot product):

Vector Notation Index Notation
é:ézc AiijiZC

The two dots in the vector notation indicate that both indices are to
be summed. Again, the result is a scalar.



(d)

Tensor product of two vectors (a.k.a. dyadic product):

Vector Notation Index Notation
ab = g aibj = Ci 1

The term “tensor product” refers to the fact that the result is a ten-
sor.

Tensor product of two tensors:

Vector Notation Index Notation
A-B=C AijBje = C;

The single dot refers to the fact that only the inner index is to be
summed. Note that this is not an inner product.

Vector product of a tensor and a vector:

Vector Notation Index Notation
6§:E aiBij:cj

Given a unit vector 7, we can form the vector product 7 - B = ¢. In
the language of the definition of a tensor, we say here that then ten-
sor B associates the vector ¢ with the direction given by the vector
fi. Also, note that @- B # B - @.

Cross product of two vectors:

Vector Notation Index Notation
axb==c eijkajbk = C;

Recall that

(a1,a2,a3) x (b1,ba,b3) = (azgbs — asba, agbi — aibs, a1by — azby)

Now, note that the notation €;;;a;by represents three terms, the first



of which is

€1;60;br = €11501b; + €12k020; + €131a3D)

= ena1br + €r12a1b2 + €113a1b3 +
€1212b1 + €122a2b2 + €123a2b3 +

€131a3b1 + €132a3b2 + €133a3b3

€12302b3 + €132a3b2

= a2b3 - a3b2

(h) Contraction or Trace of a tensor (sum of diagonal terms):

Vector Notation Index Notation

8. Calculus Operations using Index Notation

Note: The spatial coordinates (z,y, z) are renamed as follows:

r — X1
y — X2

zZ — I3
(a) Temporal derivative of a scalar field ¢(x1, za, x3,t):

99 _
o = 000

There is no physical significance to the “0” subscript. Other notation
may be used.

(b) Gradient (spatial derivatives) of a scalar field ¢(z1,x2, z3,t):

o0 _
i 0o
o0 _
o 029
o0 _
ol d3¢



These three equations can be written collectively as

9¢

= 0;
oz, i@
In vector notation, 9;¢ is written V¢ or grad ¢. Note that 0;¢ is a
vector (rank=1). Some equivalent notations for 9;¢ are

and, occasionally,

Gradient (spatial derivatives) of a vector field @(x1, z2, z3,1):

oa
aixl = 81ai
oa
67552 = aQCLi
oa
87553 = 83ai

These three equations can be written collectively as

In vector notation, d;a; is written Va or grad @ Note that 0;a; is a
tensor (rank=2):

da: 61&1 81a2 81&3
grad a= é)xl = 8jai = 82@1 82(12 agag
J Oza1  Ozaz Osag

The index on the denominator of the derivative is the row index.
Note that the gradient increases by one the rank of the expression
on which it operates.

Divergence of a vector field d(x1, xo, x3,t):

divé’:V-(i’:@ai:b

Notice that d;a; is a scalar (rank=0).

Important note: The divergence decreases by one the rank of the
expression on which it operates by one. It is not possible to take the
divergence of a scalar.



(e) Curl of a vector field d(z1,x2, x3,t):

curl @ =V x @ = €;;,05a = b;

Notice that €;;10;ax is a vector (rank=1 ).
Important note: The curl does not change the rank of the expres-
sion on which it operates. It is not possible to take the curl of a scalar.

(f) Laplacian of a vector field d(z1, z2, z3,t):

V%G =V - (Va) = div (grad @) = 0;0;a; = b;

9. The ordering of terms in expression involving calculus operators

Index notation is used to represent vector (and tensor) quantities in terms
of their constitutive scalar components. For example, a; is the ith com-
ponent of the vector @. Thus, a; is actually a collection of three scalar
quantities that collectively represent a vector.

Since index notation represents quantities of all ranks in terms of their
scalar components, the order in which these terms are written within
an expression is usually unimportant. This differs from vector notation,
where the order of terms in an expression is often very important. An
extremely important caveat to the above discussion on independence of
order is to pay special attention to operators (e.g. div, grad, curl). In
particular, remember that the rules of calculus (e.g. product rule, chain
rule) still apply.

Example 1:

0

aT(aibj) = Ok (a;b;) = a;0,b; + b;0ka; (product rule)
k

Example 2: Show that V-d #d -V
o 8(11 8a2 6a3

de@zaz—a—xl 87[1;2 87{1,'3: a scalar
whereas
a-V=a0; = alaixl() + QQ%() + agaixg() = an operator
Thus,
dia; # a;0;



10. Decomposition of a Tensor into Symmetric and Antisymmetric
Parts

(a)

(b)

A tensor Q symmetric if it is equal to its transpose:
Qij = Qji

A tensor R antisymmetric if it is equal to the negative of its transpose:
R =—Rj;

Note that the diagonal terms of R;; must necessarily be zero.

Any arbitrary tensor T’ may be decomposed into the sum of a sym-
metric tensor (denoted 7(;;)) and an antisymmetric tensor (denoted

Tiiz))-
Tiy = Tijy + T

To show this, we start with T and then add and subtract one-half of
its transpose:

1 1
Tij =Tij + (Tji - Tji)

2 2
1 1 1 1
Tij = (2Tij + 2Ti’) + (2Tj‘ - 2sz‘)
1 1
Tij = 5 (Tij + Ti) + 5 (T — Tja)

symmetric antisymmetric

Thus,

1 1
Ty = 5 (T + Tjo) and Tiyy = 5 (T — Tji)

It is also possible to show that the antisymmetric component of I
can be calculated as

Tiig) = 5€ijkerimTim
The scalar product of any symmetric and antisymmetric tensor is
zero (Proof is assigned as Problem 3).

QZEZEZQZO if Qij:jS and RZ‘J‘Z—RJ‘Z‘



(f) A more general form of the previous relationship can be stated as
follows. The expression A;jxi.. Bjkim... = 0 is equal to zero if A and
B are symmetric and antisymmetric (respectively) with respect to
the same indices. For example,

AijkiBjkim =0

if A;jr = Aigji and Bjgim = —Bijim. (The proof for this is assigned
as Problem 4).
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Problems

1. Write the following vector expressions in Cartesian Index Notation:
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2. Is the expression “curl [@ - (grad ¢)]” valid? Why or why not?

3. Show that @ : R=R:Q =0 if Q is symmetric and R is antisymmetric.

4. Show that A;jrBjrim = 0 if A is symmetric with respect to indices j and
k, and B is antisymemtric with respect to j and k. Note that this is a
more general version of problem 3.

5. Show that V - ptiti = pti - Vi + pt(V - @)

6. Show that a;0ja; = V ( a- (i’)

7. Show that curl (grad ¢)=0

8. Show that @ x (bx &) = (@-&)b— (@-b)¢

9. Show that (@xb)-(E@xd)=(G-c)b-d)—(@-d)

10. Show that V- (V xd) =0

11. Show that V- (@ xb) =b-(V x &) —

U
—
<
X
S

— — —

12. Show that V x (@xb) =a(V-b)+b-Vi—a-Vb—b(V-a)

13. Show that if div @ = 0, div ¥ = 0, and curl @ = 0 then

Vo [(@x¥)x @] =d-[(7-V)i— (@ V)7
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14. Show that V x [V (33-@) — @ x (Vx @)] =V x (@-Va)

15. Using the identity given in problem 14, show that

Vx (@ Va)=a V(Vxad)+(V-a)(Vxd)—(Vxad)-(Va)
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